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Abstract In this paper, we consider the Lagrangian dual problem of a class of convex
optimization problems, which originates from multi-stage stochastic convex nonlinear pro-
grams. We study the Moreau–Yosida regularization of the Lagrangian-dual function and
prove that the regularized function η is piecewise C2, in addition to the known smoothness
property. This property is then used to investigate the semismoothness of the gradient map-
ping of the regularized function. Finally, we show that the Clarke generalized Jacobian of
the gradient mapping is BD-regular under some conditions.
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1 Introduction

In this paper, we consider the following convex program:

min f (x)
s.t. fi (x) ≤ 0, i = 1, 2, . . . , θ,

Ax = a, x ∈ IRn,

(1)

where f, fi , i = 1, 2, . . . , θ , are smooth and convex on IRn , and A ∈ IRm×n with rank(A) =
m and 0 < m < n. It is known that many practical problems can be converted to problem
(1). For example, some recent studied multi-stage stochastic convex nonlinear programming
models can be formulated as (1). See [20, Chap. 1] and [25] for the detailed modelling in
this regard.
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Let F := {x ∈ IRn : fi (x) ≤ 0, i ∈ Î } where Î = {1, . . . , θ}. In many circumstances,
particularly in multistage stochastic programming, f and F are separable into scenarios in
the following sense: x = (x1, . . . , x K ), xk ∈ IRnk ,

∑K
k=1 nk = n, and f , fi , i = 1, . . . , θ ,

can be divided into K groups which can be represented for all x as sums:

f (x) =
K∑

k=1

f k(xk), fi (x) =
K∑

k=1

f k
i (x

k), i = 1, . . . , θ.

However, the constraint Ax = a, which is called nonantipicipativity constraint, is non sep-
arable. Thus, we seek to relax the constraint Ax = a using the Lagrangian dual of problem
(1) as follows:

min{ϕ(v) | v ∈ IRm}, (2)

where

ϕ(v) = sup{− f (x)+ vT (Ax − a) | x ∈ F}. (3)

The subproblem in (3) is separable and then is solvable using the well-developed parallel
algorithms. However, note that (2) is a nonsmooth problem due to the nonsmoothness of
ϕ. To overcome this, we adopt the well known Moreau [13]–Yosida [24] regularization to
convert (2) into a smooth problem as follows:

min{η(v) | v ∈ IRm}, (4)

where η is the Moreau–Yosida regularization of ϕ given below

η(v) = min
w∈IRm

{

ϕ(w)+ 1

2
||w − v||2M

}

, v ∈ IRm, (5)

M is a symmetric positive definite m × m matrix and ‖v‖2
M = vT Mv for any v ∈ IRm .

It is well known [5,6] that (4) is equivalent to (2) in the sense that the set of minimiz-
ers of problem (4) coincides with the set of minimizers of (2). Note that η is continuously
differentiable and its gradient g = ∇η is globally Lipschitz continuous with modulus ||M ||.

Fukushima and Qi [5] established the superlinear convergence of the generalized Newton’s
method for solving (4) by using approximate solutions of the problem (5) to construct search
directions for minimizing η. Since it is difficult to find an exact solution for (5), the compu-
tation of an approximate solution appears easier. For instance, we can use a parameterized
function ϕ(w,µ), which is smooth for µ > 0, such that ϕ(w,µ) tends to ϕ(w) when the
smoothing parameter µ is driven to zero, as in the case of the barrier function method.
Actually, this method was employed for solving multi-stage stochastic nonlinear problems
recently [25], in which the underlying stochastic problem was formulated exactly as prob-
lem (1). For any prescribed accuracy, people may choose an appropriate µ > 0 as long as
the solution of minimizing ϕ(w,µ) + (1/2)‖w − v‖2

M is a desirable approximate solution
to problem (5). In fact, in addition to the above parameterization method, any method for
computing approximate minimizers of (2) in literature can be incorporated into the Moreau–
Yosida regularization, and gives rise to an enhanced method for minimizing the nonsmooth
problem (2). Hence, it is important and meaningful to establish the theoretical framework of
the Moreau–Yosida regularization which can benefit a variety of algorithms.

Note that, for the problem considered in this paper, one of the most important properties
about the Moreau–Yosida regularization is the semismoothness of the gradient of the reg-
ularized function, which has played a key role in establishing the superlinear convergence
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of the generalized Newton’s method for nonsmooth convex problems by using the Moreau–
Yosida regularization scheme [5]. The notion of semismooth functions was first introduced
by Mifflin [11] which is an important subclass of Lipschitz functions. In order to establish the
superlinear convergence of generalized Newton’s method for solving nonsmooth equations,
Qi and Sun [16] extended the definition of semismoothness to vector valued functions. After
the work of Qi and Sun, semismoothness was extensively used to establish superlinear/qua-
dratic convergence of Newton’s method for solving the convex best interpolation problem
[3,4], the nondifferentiable equations in which the underlying functions are slant differentia-
ble functions [1], complementarity problems and variational inequalities [17], and the inverse
eigenvalue problem [23], for instance.

In this paper, our focus is on a special case of semismooth functions, piecewise Ck func-
tions, which is a large class of locally Lipschitz continuous functions, found in most practical
problems. In the past few years, many people have studied piecewise smoothness of non-
smooth functions and designed algorithms based on Newton’s method for solving the asso-
ciated nonsmooth equations. For instance, the analysis was mainly focused on piecewise
Ck functions in [8,12,22], where the authors investigated properties of g for some specific
classes of ϕ. Specifically, Sun and Han [22] showed the semismoothness of g if ϕ is the
maximum of several twice continuously differentiable convex functions under a constant
rank constraint qualification (CRCQ). Meng and Hao [8] derived the same result for the case
of unconstrained problem (1) where the objective function f is piecewise C2 under a weaker
sequential constant rank constraint qualification. Later, Mifflin et al. [12] investigated the
case where ϕ is piecewise C2 under an affine independence preserving constraint qualifica-
tion (AIPCQ). Recently, Meng et al. [10] proved that the Lagrangian-dual function ϕ in the
case of the objective f in (1) being an affine function is piecewise C2 and, using the result
established in [12], they derived the semismoothness of g. Note that the notions of CRCQ
and AIPCQ mentioned above are defined with respect to piecewise smooth functions under
consideration whereas the usual constraint qualifications in nonlinear programming, e.g.,
Linear Independence Constraint Qualification (LICQ), Mangasarian-Fromovitz Constraint
Qualification (MFCQ), and CRCQ, are defined in terms of constraint functions.

Having motivated the importance of the notions of semismoothness and the Moreau–
Yosida regularization in nonsmooth analysis, in this paper, we will investigate properties of
the Moreau–Yosida regularization η and the gradient mapping g of η. The analysis of the
present paper differs from that of Meng et al. [10] in two main ways. First, we consider a more
general problem where the objective function f in (1) is a nonlinear convex function while the
analysis in [10] is mainly focused on the case where f is an affine function. Second, the meth-
ods used here are quite different from those of [10] where the semismoothness of g is derived
based on the study of piecewise C2-ness of the Lagrangian dual function ϕ. In this paper,
we study the semismoothness of g by investigating the piecewise smoothness of the regular-
ized function η directly. Additionally, in the analysis, we introduce a so called generalized
affine independence preserving constraint qualification (GAIPCQ). Unlike AIPCQ defined
for piecewise function in [12], GAIPCQ is defined in terms of constraint functions.

Our contributions are as follows. In this paper, we show that the regularized function η is
piecewise twice continuously differentiable. It is well known that the regularized function η
is smooth, however, the second-order properties of η is unclear yet, which is very important
in constructing higher convergence generalized Newton methods for solving (4). Second, we
derive the piecewise smoothness and thereby the semismoothness of g. Further, we examine
the conditions under which the Clarke generalized Jacobian of the gradient g is BD-regular
(See Definition 4 in Sect. 4) and then derive that every element in the Clarke generalized
Jacobian is symmetric and positive definite.
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The rest of the paper is organized as follows. In Sect. 2, basic definitions and properties
are collected. Section 3 investigates the piecewise C2-ness of the function η and the semi-
smoothness of g. Section 4 studies the BD-regularity of the Clarke generalized Jacobian of
the gradient g. Section 5 concludes.

2 Preliminaries

In this section, we briefly recall some concepts, such as semismoothness, piecewise smooth-
ness, MFCQ, and GAIPCQ, which will be used in this paper.

It is known that the regularized function η is a continuously differentiable and convex
function on IRm even though ϕ may be nondifferentiable. The gradient of η at v (see, [6]) is

g(v) ≡ ∇η(v) = M(v − p(v)), v ∈ IRm, (6)

where p(v) represents the unique solution of the minimization problem in (5). In order to
use Newton’s method or modified Newton’s methods for solving (4), it is important to study
the Hessian of η, i.e., the Jacobian of g. A remarkable feature of semismoothness is that
superlinear or quadratic convergence of generalized Newton method for solving nonsmooth
equations can be obtained under the assumption of semismoothness. See [5,15,16] for the
relevant discussions. The notion of semismoothness for vector-valued functions is defined
as follows [16].

Definition 1 Suppose F : IRn → IRm is a locally Lipschitzian vector-valued function, we
say that F is semismooth at u if

lim
V ∈∂F(u+th′),

h′→h, t↓0

{V h′}, (7)

exists for any h ∈ IRn , where ∂F(u) denotes the Clarke generalized Jacobian [2].

Note that in general a direct verification of semismoothness is difficult. Some equivalent
definitions of semismooth functions and further studies on semismoothness can be found
in [9,15] and the references therein. In particular, as discussed earlier, piecewise smooth
functions is a special case of semismooth function.

To investigate the semismoothness or piecewise smoothness of g, we will study the piece-
wise C2-ness of the regularized function η in the subsequent analysis. It is known that, to
establish the higher convergence of Newton’s method based algorithms for solving non-
smooth equations, people often assume that the underlying gradient is semismooth in a
vicinity of the optimal solution. Due to this, we would like to investigate the piecewise C2-
ness of η around a given point. We now give a definition of piecewise smooth functions
below, which is slightly different from the one given in [21].

Definition 2 A continuous function ψ : IRn → IRl is said to be a piecewise Ck function
on a set D ⊆ IRn if there exist a finite set of functions ψ j , j = 1, . . . , q , such that each
ψ j ∈ Ck(U ) for some open set U containing D, and ψ(u) ∈ {ψ1(u), . . . , ψq(u)} for any
u ∈ D.
We refer to {ψ j }i∈ Ĩ as a representation of ψ on D, where Ĩ = {1, . . . , q}.

Note that in the case when D is an open set, functions ψ j , i = 1, . . . , q , in Definition 2
are required to be defined on D only. Since our focus is on the study of the piecewise Ck-ness
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of η on some open neighborhood around a given point, we seek to find the corresponding
pieces defined on this open neighborhood as well.

The following problem will be used to examine properties of η:

ζ̃ (u) = max
x∈F

{

uT x − 1

2
‖Ax‖2

M−1 − f (x)

}

, u ∈ IRn . (8)

Note that u serves as a perturbation parameter of the optimization problem in (8). For u ∈ IRn ,
we denote by (Pu) the underlying perturbed problem above. Note also that (Pu) is a concave
problem for any given u, and the corresponding Karush–Kuhn–Tucker (KKT) conditions can
be written as:

⎧
⎨

⎩

−∇ f (x)− AT M−1 Ax − ∑
i∈ Î λi∇ fi (x)+ u = 0,

fi (x) ≤ 0, i ∈ Î ,
λi fi (x) = 0, λi ≥ 0, i ∈ Î .

(9)

For constraints fi in F , the active index set is defined by I (x) := {i ∈ Î | fi (x) = 0}.
Recall that LICQ is said to hold at x ∈ F , if {∇ fi (x) : i ∈ I (x)} is linearly independent;
MFCQ holds at x ∈ F if there exists y ∈ IRn such that ∇ fi (x)T y < 0 for all i ∈ I (x); and
CRCQ is said to hold at x ∈ F , if for every subset K ⊆ I (x), there exists a neighborhood
N (x) of x , such that {∇ fi (y) : i ∈ K } has the same rank (dependent on K ) for all y ∈ N (x).
It is known that CRCQ, studied by Janin [7], Pang and Ralph [14] amongst others, is a gener-
alization of the LICQ. Evidently, LICQ implies CRCQ but not vice versa; and LICQ implies
MFCQ but not vice versa. It is also known from [7] that CRCQ neither implies nor is implied
by MFCQ.

In this paper, we introduce a constraint qualification, called Generalized Affine Indepen-
dent Preserving Constraint Qualification (GAIPCQ) as follows.

Definition 3 The GAIPCQ is said to hold at x ∈ F , if for every subset K ⊆ I (x) for which
there exists a sequence {xk} with {xk} → x , K ⊆ I (xk) and the vectors {∇ fi (xk) : i ∈ K }
being linearly independent, it follows that the vectors {∇ fi (x) : i ∈ K } are linearly inde-
pendent.

It is evident that GAIPCQ is weaker than CRCQ as the latter implies the former but not vice
versa.
Set

V (x, λ) := AT M−1 A + ∇2 f (x)+
∑

i∈I (x)

λi∇2 fi (x), (10)

and

G(x, λ) :=
{

d ∈ IRn : ∇ fi (x)
T d = 0, ∀ i ∈ I0(x, λ)

}
, (11)

where I0(x, λ) := {i ∈ Î : fi (x) = 0, λi > 0}. A point (x, λ) ∈ IRn+θ is said to satisfy the
strong second-order sufficiency condition for (8) if it satisfies the first-order KKT conditions
(9) and

dT V (x, λ)d > 0, for all d ∈ G(x, λ) \ {0}. (12)

Note that if I (x) = ∅, the last term in (10) will disappear automatically and the set G(x, λ)
will become to the whole n-dimensional space.
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3 Piecewise C2-ness of η and semismoothness of g

As discussed earlier, the regularized function η of the Lagrangian-dual function possesses the
smoothness property. In this section, we investigate its higher order properties. Specifically,
we will study the piecewise C2-ness of η and the semismoothness of its gradient. First, we
make the following assumptions throughout the forthcoming paper.

Assumption 1 F is nonempty, bounded, and int(F) 
= ∅.

Assumption 2 f, fi ∈ C2(IRn) for all i ∈ Î .

The motivation of Assumption 1 is to guarantee the properness of the function ζ̃ defined in
(8) and to make the von Neumann duality applicable as shown by Proposition 1. Assumption 1
also ensures that the optimal solution of perturbed problem (Pu) will lie in the interior of the
feasible set F , if not falls on its boundary. In other words, we rule out the situation where
the optimal solution lies in the relative interior of F . Assumption 2 is a natural assumption
of smoothness. Under these two assumptions, we derive an alternative expression of the
Moreau–Yosida regularization function η as follows.

Proposition 1 For η defined in (5), under Assumptions 1 and 2 we have

η(v) = η̃(v)− vT a − 1

2
‖a‖2

M−1 , v ∈ IRm, (13)

where η̃(v) := maxx∈F
{

(v + M−1a)T Ax − 1

2
‖Ax‖2

M−1 − f (x)

}

.

Proof By the definitions of η, ϕ, and by Assumptions 1 and 2,

η(v) = min
w∈IRm

{

ϕ(w)+ 1

2
‖w − v‖2

M

}

= min
w∈IRm

{

max
x∈F

{
− f (x)+ wT (Ax − a)

}
+ 1

2
‖w − v‖2

M

}

= min
w∈IRm

max
x∈F

{

− f (x)+ wT (Ax − a)+ 1

2
‖w − v‖2

M

}

.

Let K1(x, w) := − f (x)+wT (Ax − a)+ 1

2
‖w− v‖2

M . Since f is a convex function, it fol-

lows that K1(·, ·) is a continuous, finite, and concave–convex function on F × IRm . Further,
F is a closed set due to the continuity of fi , i ∈ Î . By Assumption 1 and the well known von
Neumann duality theory (see [19, Corollary 37.3.2]), we have

η(v) = min
w∈IRm

max
x∈F

{

− f (x)+ wT (Ax − a)+ 1

2
‖w − v‖2

M

}

= max
x∈F

min
w∈IRm

{

− f (x)+ wT (Ax − a)+ 1

2
‖w − v‖2

M

}

= max
x∈F

{

min
w∈IRm

{

wT (Ax − a)+ 1

2
‖w − v‖2

M

}

− f (x)

}

.

Let K2(w) = wT (Ax − a) + 1

2
‖w − v‖2

M . Obviously, ∇K2(w) = Ax − a + M(w− v).
So, the optimal solution for the unconstrained inner minimization problem above is
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w∗ = v − M−1(Ax − a). Therefore,

η(v) = max
x∈F

{

min
w∈IRm

{

wT (Ax − a)+ 1

2
‖w − v‖2

M

}

− f (x)

}

= max
x∈F

{
(
v − M−1(Ax − a)

)T
(Ax − a)+ 1

2
‖M−1(Ax − a)‖2

M − f (x)

}

= max
x∈F

{

(v + M−1a)T Ax − 1

2
‖Ax‖2

M−1 − f (x)

}

− vT a − 1

2
‖a‖2

M−1 .

This completes the proof. ��
Note that η shares some properties of interest with η̃, such as, smoothness or piecewise

Ck-ness. Due to this, in what follows, we mainly investigate the properties of η̃. In addition,
evidently, under Assumption 1, domζ̃ = IRn and domη̃ = IRm , where domh represents the
domain of a function h : IRl → IR ∪ {+∞} defined by domh := {z ∈ IRl : h(z) < +∞}.
Note also that ζ̃ is a convex function on IRn . Further, by virtue of the definition of ζ̃ defined
in (8), η̃ can be rewritten as follows:

η̃(v) = ζ̃ (AT (v + M−1a)), v ∈ IRm .

Hence, to investigate function η̃, we need to study the properties of ζ̃ instead in the analysis.

3.1 Second-order properties of ζ̃

In this subsection, we will investigate some second order properties of the optimal value
function ζ̃ of (Pu), based on the different distribution of its corresponding optimal solution,
i.e., the solution falls on the boundary or the interior of the feasible set. For the former case,
our attention turns to study second order properties of some auxiliary functions ζ̃Q which
are closely related to a facet Q of F .

We first state a result which characterizes the relationship between η̃ and ζ̃ in terms of the
piecewise smoothness.

Proposition 2 Let v̄ ∈ IRm. If ζ̃ is piecewise C2 on an open neighborhood N (ū) of ū :=
AT v̄ + AT M−1a, then η̃ is piecewise C2 on an open neighborhood of v̄.

Proof Since ζ̃ is piecewise C2 on N (ū), by definition, there exists functions ζ̃i ∈ C2(N (ū)),
i = 1, . . . , k, such that ζ̃ (u) ∈ {ζ̃1(u), . . . , ζ̃k(u)} for any u ∈ N (ū). Let

η̃i (v) := ζ̃i (A
T (v + M−1a)), N (v̄) := {v : AT v + AT M−1a ∈ N (ū)}.

Then, it is evident that η̃i ∈ C2(N (v̄)), and N (v̄) is an open neighborhood of v̄. Furthermore,
η̃(v) ∈ {η̃1(v), . . . , η̃k(v)} for every v ∈ N (v̄). This completes the proof. ��

According to Proposition 2, to study the piecewise smoothness of η̃, it is enough to inves-
tigate that of ζ̃ . For a given u ∈ IRn , we consider the following two cases: (i) the optimal
solution of (Pu) lies in the interior of F ; (ii) the optimal solution of (Pu) lies on the boundary
bdF of F , respectively.

For a symmetric matrix B, we denote by B � 0 a symmetric positive definite matrix. We
derive the following result concerning case (i).

Proposition 3 Let ū ∈ IRn. Assume that the optimal solution, x̄ , of (Pū) lies in the interior
of F . Suppose that ∇2 f (x̄)+ AT M−1 A � 0. Then, there exists an open neighborhood N (ū)
of ū such that ζ̃ ∈ C2(N (ū)).
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Proof Since, by assumption, x̄ is an interior point of F , then x̄ together with a Lagrangian
multiplier λ̄ satisfies the KKT conditions:

⎧
⎨

⎩

∇ f (x̄)+ AT M−1 Ax̄ = ū,
fi (x̄) < 0, i ∈ Î ,
λ̄i = 0, i ∈ Î .

(14)

Define a mapping ϒ : IRn × IRn → IRn by

ϒ(x, u) = ∇ f (x)+ AT M−1 Ax − u.

Then, we have ϒ(x̄, ū) = 0. Obviously, ϒ is smooth on IRn × IRn . Note also that, by
assumption, ∇xϒ(x, u) = ∇2 f (x) + AT M−1 A is nonsingular at (x̄, ū). Hence, by the
implicit function theorem, there exists an open neighborhood N (ū) of ū and a unique contin-
uously differentiable function x(u) defined on N (ū) such that x(ū) = x̄ , andϒ(x(u), u) = 0
for every u ∈ N (ū).

On the other hand, shrinking N (u) when necessary, we have I (x(u)) = ∅ for u ∈ N (ū).
For any u ∈ N (ū), it is easy to verify that x(u) together with λ = 0 ∈ IRθ satisfies the KKT
conditions of (Pu), which leads to that x(u) is the unique optimal solution of (Pu). Then,

ζ̃ (u) = − f (x(u))− 1

2
‖Ax(u)‖2

M−1 + uT x(u), u ∈ N (ū). (15)

Hence, ζ̃ is smooth on N (ū) due to the smoothness of x(u).
Next, we further prove that ζ̃ is twice continuously differentiable on N (ū). Let u ∈ N (ū).

For any u′ ∈ IRn , it holds

ζ̃ (u′) = max
x∈F

{

u′T x − 1

2
‖Ax‖2

M−1 − f (x)

}

≥ u′T x(u)− 1

2
‖Ax(u)‖2

M−1 − f (x(u))

= uT x(u)− 1

2
‖Ax(u)‖2

M−1 − f (x(u))+ (u′ − u)T x(u)

= ζ̃ (u)+ (u′ − u)T x(u).

Recall that ζ̃ is a convex function on IRn , thus x(u) is a subgradient of ζ̃ at u. So,

∇ ζ̃ (u) = x(u), ∀ u ∈ N (ū),
which, together with the smoothness of x(u) on N (ū), implies that ζ̃ ∈ C2(N (ū)) immedi-
ately. This completes the proof. ��
Remark 1 For u ∈ IRn , let xopt denote the optimal solution of (Pu). Define

Ũ := {u ∈ IRn : I (xopt) = ∅}, Û := IRn \ Ũ .

Then, according to the proof of Proposition 3, it is not hard to show that Ũ is an open set in
IRn . Note further that, in this case, we can find a twice continuously differentiable function,
denoted by ζ̃0, which is defined on the whole space IRn , such that ζ̃0(u) = ζ̃ (u) for every
u ∈ Ũ .

Next, we investigate the case where the optimal solution of (Pu) lies on the boundary of
F . In other words, u ∈ Û . We need the following non-degenerate assumption.
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Assumption 3 Let u ∈ Û . For any KKT point (x, λ) associated with problem (Pu), the
Lagrangian multiplier λ 
= 0.

We now define some notations, which will be used in the sequel. Q is said to be a facet
of F if there exists an index subset IQ ⊂ Î , such that Q = {x ∈ F : fi (x) = 0, ∀i ∈ IQ}.
IQ is referred to as the index set of the facet Q. We denote by |S| the cardinality of a set S.

For each facet Q of F with the index set IQ , we define the following sets with respect to
x ∈ Q and λ ∈ IR|IQ |:

IQ(λ) := {i ∈ IQ : λi > 0},
G Q(x, λ) :=

{
d ∈ IRn : ∇ fi (x)

T d = 0, ∀ i ∈ IQ(λ)
}
,

VQ(x, λ) := AT M−1 A + ∇2 f (x)+
∑

i∈IQ

λi∇2 fi (x),

and

WQ :=
{
(x, λ) ∈ IRn × IR|IQ | : fi (x) = 0, ∀ i ∈ IQ, and

dT VQ(x, λ)d > 0 for all d ∈ G Q(x, λ) \ {0}
}
, (16)

where G Q(x, λ) = IRn when IQ(λ) = ∅.
Let f̃ (x) denote the column vector consisting of fi (x) for each i ∈ IQ . Define a mapping

	Q : IRn × IR|IQ | → IRn+|IQ | by

	Q(x, λ) :=
⎛

⎝
∇ f (x)+ ∑

i∈IQ
λi∇ fi (x)+ AT M−1 Ax

f̃ (x)

⎞

⎠ . (17)

The following lemma plays an important role in our further analysis.

Lemma 1 Let WQ, 	Q be defined by (16), (17), respectively. Suppose that {∇ fi (x)}i∈IQ

are linearly independent. Then the Jacobian of 	Q is nonsingular at each (x, λ) ∈ WQ.

Proof Note that for every (x, λ) ∈ WQ , the Jacobian of 	Q is

∇	Q(x, λ) =
⎛

⎝
VQ(x, λ) ∇ f̃ I0(x) ∇ f̃ I1(x)
∇ f̃ I0(x)

T 0 0
∇ f̃ I1(x)

T 0 0

⎞

⎠ ,

where ∇ f̃ I0(x) := {∇ fi (x)}i∈I0 , ∇ f̃ I1(x) := {∇ fi (x)}i∈I1 , I0 := IQ(λ), and I1 := IQ \ I0.
Let

∇	Q(x, λ)

⎛

⎝
d1

d2

d3

⎞

⎠ = 0,

where d1 ∈ IRn , d2 ∈ IR|I0|, and d3 ∈ IR|I1|. Then, it follows that

0 = VQ(x, λ)d1 + ∇ f̃ I0(x)d2 + ∇ f̃ I1(x)d3, (18)

0 = ∇ f̃ I0(x)
T d1, (19)

0 = ∇ f̃ I1(x)d1. (20)
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By (19), d1 ∈ G Q(x, λ). Multiplying (18) by dT
1 , we have

dT
1 VQ(x, λ)d1 + dT

1 ∇ f̃ I0(x)d2 + dT
1 ∇ f̃ I1(x)d3 = 0.

Then, by virtue of (19) and (20),

dT
1 VQ(x, λ)d1 = 0.

By the definition of WQ , d1 = 0. So, (18) yields that

∇ f̃ I0(x)d2 + ∇ f̃ I1(x)d3 = 0.

Since {∇ fi (x)}i∈IQ are linearly independent, d2 = 0 and d3 = 0. Thereby, d1 = 0, d2 = 0,
and d3 = 0, which leads to the nonsingularity of ∇	Q(x, λ). This completes the proof. ��

By virtue of Lemma 1, we obtain the following result.

Lemma 2 Let WQ be given by (16). Suppose that {∇ fi (x)}i∈IQ are linearly independent.

For (x̄, λ̄) ∈ WQ, let 	Q(x̄, λ̄) =
(

ū
0

)

. Then, there exist open neighborhoods N (ū) of ū,

N (x̄, λ̄) of (x̄, λ̄) such that, when u ∈ N (ū), the equation

	Q(x, λ) =
(

u
0

)

has a unique solution ξ(u) = (ξx , ξλ)(u) ∈ N (x̄, λ̄). Further, (ξx , ξλ)(u) is continuously
differentiable on N (ū).

Proof Define a mapping �Q(x, λ, u) := 	Q(x, λ)−
(

u
0

)

. Clearly, �Q is smooth on IRn ×
IR|IQ | × IRm , and

�Q(x̄, λ̄, ū) = 	Q(x̄, λ̄)−
(

ū
0

)

= 0.

Further, according to Lemma 1, ∇(x,λ)�Q(x, λ, u) = ∇	Q(x, λ) is nonsingular at (x̄, λ̄, ū).
Hence, the desired results follow immediately by virtue of the implicit function theorem.
This completes the proof. ��

As a consequence of Lemma 2, we obtain the following result.

Proposition 4 For (x̄, λ̄) ∈ WQ, let ū = ∇ f (x̄)+ ∑
i∈IQ

λ̄i∇ fi (x̄)+ AT M−1 Ax̄. Define

ζ̃Q(u) := − f (ξx (u))− 1

2
‖Aξx (u)‖2

M−1 + uT ξx (u), u ∈ N (ū),

where ξx (u) and N (ū) are defined as Lemma 2. Then, (i) for u ∈ N (ū), ∇ ζ̃Q(u) = ξx (u);
(ii) ζ̃Q ∈ C2(N (ū)).

Proof From Lemma 2 and the first equation of 	Q(ξ(u))−
(

ū
0

)

= 0, it follows that

u = ∇ f (ξx (u))+
∑

i∈IQ

ξλi (u)∇ fi (ξx (u))+ AT M−1 Aξx (u).
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So,

∇ ζ̃Q(u) = −∇ξx (u)∇ f (ξx (u))+ ξx (u)+ ∇ξx (u)u − ∇ξx (u)A
T M−1 Aξx (u)

= ξx (u)+ ∇ξx (u)
[
−∇ f (ξx (u))− AT M−1 Aξx (u)+ u

]

= ξx (u)+ ∇ξx (u)

⎡

⎣ − ∇ f (ξx (u))− AT M−1 Aξx (u)+ ∇ f (ξx (u))

+
∑

i∈IQ

ξλi (u)∇ fi (ξx (u))+ AT M−1 Aξx (u)

⎤

⎦

= ξx (u)+ ∇ξx (u)
∑

i∈IQ

ξλi (u)∇ fi (ξx (u))

= ξx (u)+
∑

i∈IQ

ξλi (u)∇ξx (u)∇ fi (ξx (u)).

Since fi (ξx (u)) = 0 for every u ∈ N (ū) and each i ∈ IQ , differentiating these functions,
we have ∇ξx (u)∇ fi (ξx (u)) = 0, ∀ i ∈ IQ . Hence,

∑

i∈IQ

ξλi (u)∇ξx (u)∇ fi (ξx (u)) = 0,

which leads to that ∇ ζ̃Q(u) = ξx (u). Again, by Lemma 2, ξx (u) is continuously differentiable
on N (ū). Therefore, ζ̃Q(u) is twice continuously differentiable on N (ū). ��

In this subsection, we show that ζ̃ is twice continuously differentiable on an open neigh-
borhood of u when u ∈ Ũ . In the case of u ∈ Û , we define function ζ̃Q associated with the
facet Q of F and prove that ζ̃Q is twice continuously differentiable in a vicinity of u as well.
These functions ζ̃Q , as we shall prove in next subsection, actually serve as the pieces of a
representation for ζ̃ , which then implies the piecewise C2-ness of ζ̃ for the latter case, i.e.,
u ∈ Û .

3.2 Piecewise C2-ness of ζ̃

In this subsection, we study the piecewise C2-ness of ζ̃ . We will use the following result
concerning the continuity of the local optimal solution of perturbed problem (8), which is
taken from [18, Theorem 3.2].

Proposition 5 Let u ∈ IRn be given. Suppose that for some x ∈ F , MFCQ holds at x. Sup-
pose further that for each (x, λ) satisfying the KKT conditions (9), the strong second-order
sufficient condition holds at (x, λ). Then, x is a strict local optimal solution of (Pu). And, the
optimal solution to (Pu′ ) tends to x as u′ → u.

For any u ∈ Û , let x be the optimal solution of (Pu). Let M(u) denote the set of multipli-
ers λ ∈ IRθ such that x together with λ satisfies the KKT conditions (9). For a nonnegative
vector α ∈ IRl , we denote by supp(α) the support of α which is defined by supp(α) := {i :
αi > 0, i = 1, . . . , l}. We define an index set

B(u) := {K | there exists λ ∈ M(u) such that supp(λ) ⊆ K ⊆ I (x),

and the vectors {∇ fi (x) : i ∈ K } are linearly independent}.
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Note that, under the assumption of MFCQ at x , B(u) is nonempty since M(u) has an extreme
point, which can easily yield an index set K as defined in B(u).

Lemma 3 Let u ∈ Û and x(u) be the optimal solution of (Pu). Suppose the conditions of
Proposition 5 hold. Suppose further that GAIPCQ is satisfied at x(u). Then, there exists an
open neighborhood N1(u) of u such that B(w) ⊆ B(u) for any w ∈ N1(u).

Proof To ease the notation, let x(w) denote the optimal solution of (Pw). Evidently, by
definition, |I (x(u))| ≥ 1 since u ∈ Û . According to Proposition 5, for any w close to u,

I (x(w)) ⊆ I (x(u)). (21)

Suppose on the contrary that the proposed result is false. Noticing that I (x(u)) is a finite
index set, then there exists a sequence {uk} tending to u such that there exists an index set K
satisfying K ∈ B(uk)\B(u) for all k. So, for each k, the vectors {∇ fi (x(uk)) : i ∈ K } are lin-
early independent, and there exists λ(uk) ∈ M(uk) such that supp(λ(uk)) ⊆ K ⊆ I (x(uk)),
but K /∈ B(u). Then, by GAIPCQ, the vectors {∇ fi (x(u)) : i ∈ K } must be linearly inde-
pendent. Moreover, it follows from (21) that K ⊆ I (x(u)). Since K /∈ B(u), we then derive
the following statement:

T here does not exist λ(x(u)) ∈ M(u) such that supp(λ(u)) ⊆ K ⊆ I (x(u)). (22)

On the other hand, by the definition of λ(x(uk)),

− ∇ f (x(uk))− AT M−1 Ax(uk)−
∑

i∈K

λi (x(u
k))∇ fi (x(u

k))+ uk = 0. (23)

Since {∇ fi (x(uk)) : i ∈ K } are linearly independent and ∇ fi (x(uk)) → ∇ fi (x(u)) as
k → ∞, the sequence of vectors {(λi (x(uk)))i∈K } is bounded. Thus, {(λ(x(uk)))i∈K } must
have an accumulation point, say, λ̄K (x(u)). It then follows from (23) that

−∇ f (x(u))− AT M−1 Ax(u)−
∑

i∈K

λ̄K
i (x(u))∇ fi (x(u))+ u = 0.

Define

λi (x(u)) =
{
λ̄K

i (x(u)), if i ∈ K ,
0, if i ∈ I (x(u)) \ K ,

then, λ(x(u)) ∈ M(u) and supp(λ(x(u))) ⊆ K ⊆ I (x(u)), which leads to a contradiction
with (22). This completes the proof. ��

For u ∈ Û , we study the piecewise C2-ness of ζ̃ on an open neighborhood of u for the
following two cases: (i) u ∈ intÛ ; (ii) u ∈ bdÛ , respectively.

Proposition 6 For u ∈ intÛ , let x be the optimal solution of (Pu). Suppose that (a) both GAI-
PCQ and MFCQ hold at x; (b) the strong second-order sufficient condition holds at each KKT
point of problem (Pu). Then, there exist an open neighborhood N (u) of u and functions ζ̃i (·)
defined on N (u) such that ζ̃i ∈ C2(N (u)), i = 1, . . . , k, and ζ̃ (w) ∈ {ζ̃1(w), . . . , ζ̃k(w)}
for every w ∈ N (u). That is, ζ̃ is piecewise C2 on N (u).

Proof For any K ∈ B(u), there exists (x, λK (u)) with λK (u) ∈ M(u) such that x∗ lies on
the facet, denoted by QK := {x ∈ F | fi (x) = 0, i ∈ K }. Then, by the strong second-order
sufficiency condition, it follows that (x∗, λK (u)) ∈ WQK , where WQK is defined as in (16).
Also, by the definition of B(u), {∇ fi (x∗) : i ∈ K } are linearly independent. Hence, by
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Lemma 2, there exist open neighborhoods NK (u) of u, NK (x∗, λK (u)) of (x∗, λK (u)), and
a continuously differentiable function ξ K (w) = (ξ K

x , ξ
K
λ (w)) ∈ NK (x∗, λK (u)) satisfying

	QK (ξ
K
x (w), ξ

K
λ (w)) =

(
w

0

)

for all w ∈ NK (u). Set

ζ̃QK (u) := − f (ξ K
x (u))− 1

2
‖Aξ K

x (u)‖2
M−1 + uT ξ K

x (u).

Then, by Proposition 4, ζ̃QK ∈ C2(NK (u)). Since B(u) is a finite index set, we hence derive a
finitely many set of such functions ζ̃QK : NK (u) → IRn with ζ̃QK ∈ C2(NK (u)), K ∈ B(u).

On the other hand, by Lemma 3, for any w ∈ N1(u), there exist K ∈ B(w) ⊆ B(u) and
(x(w), λK (w)) such that

⎧
⎪⎪⎨

⎪⎪⎩

w = ∇ f (x(w))+ AT M−1 Ax(w)+ ∑
i∈K λK i (w)∇ fi (x(w))

λK i (w) ≥ 0, i ∈ K ,
fi (x(w)) ≤ 0, i ∈ K ,
λK i (w) fi (x(w)) = 0, i ∈ K .

(24)

It is not hard to show that x(w) is the optimal solution of (Pw) and x(w) → x(u) as
w → u, where x(u) = x . By virtue of the linear independence of {∇ fi (x(w)) : i ∈ K }
and the continuity of x(·) and ∇ fi (·), together with the first equation in (24), we have
λK (w) → λK (u) as w → u. Thus, we can choose an open neighborhood N (u) of u with
N (u) ⊆ (

(∩K∈B(u)) ∩ N1(u) ∩ intÛ
)

such that (x(w), λK (w)) ∈ NK (x∗, λK (u)) for any
w ∈ N (u).

For K ∈ B(u), let VK (u) = {w ∈ N (u) : K ∈ B(w)}. Then, N (u) = ∪K∈B(u)VK (u).

So, for each w ∈ N (u), there exists K ∈ B(u) such that 	QK (x(w), λK (w)) =
(
w

0

)

and

(x(w), λK (w)) ∈ NK (x∗, λK (u)). By the implicit function theorem, it follows that

(x(w), λK (w)) = (ξ K
x (w), ξ

K
λ (w)),

which implies that ξ K
x (w) is an optimal solution of (Pw),w ∈ N (w). Then, the corresponding

optimal value function ζ̃ (w) is as follows:

ζ̃ (w) = ζ̃QK (w) = − f (ξ K
x (w))− 1

2
‖Aξ K

x (w)‖2
M−1 + wT ξ K

x (w), w ∈ N (u).

Thus, ζ̃ (w) ∈ {ζ̃QK (w) : K ∈ B(u)} for every w ∈ N (u). Note that B(u) is a finite set,
so there are finitely many such functions ζ̃QK . Thereby, ζ̃ is piecewise C2 on N (u). This
completes the proof. ��

Next, we consider the case where u ∈ bdÛ and derive the piecewise C2-ness of ζ̃ as
follows.

Proposition 7 For u ∈ bdÛ , let x be the optimal solution of (Pu). Suppose all the conditions
in Proposition 6 are satisfied. Then there exist an open neighborhood N (u) of u, a finitely
many set of functions ζ̃i ∈ C2(N (u)), i = 0, 1, . . . , l, such that

ζ̃ (w) ∈ {ζ̃0(w), ζ̃1(w), . . . , ζ̃l(w)}, ∀ w ∈ N (u).
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Proof In this case, the whole proof is similar to that of Proposition 6. The only problem
comes from the points which lie in the intersection of some neighborhood of u and Ũ , i.e.,
{w ∈ IRn | w ∈ N (u) ∩ Ũ}. For sake of brevity, we will roughly describe the proof. With
similar arguments as in Proposition 6 and noticing the only required concern is that the
optimal solution x ∈ bdF , but no any restriction on u, we then obtain ζ̃i ∈ C2(Ni (u)) and
N (u) ⊆ ∩i∈I1Ni (u), where Ni (u) is an open neighborhood of u and I1 is a finite index
set, which is denoted by {1, . . . , l}. Now, for any w ∈ N (u), there are two cases needed to
consider:

Case i. w ∈ Û . Then, the corresponding optimal solution x(w) ∈ bdF . Thereby, there
exists i ∈ I1 such that ζ̃ (w) = ζ̃i (w) as discussed in Proposition 6.

Case ii. w ∈ Ũ . According to Remark 1, there exists a function ζ̃0 ∈ C2(IRn), such that
ζ̃ (w) = ζ̃0(w).

We define an index set Ĩ := I1 ∪ {0}. Then, based on the above arguments, we have
ζ̃ (w) ∈ {ζ̃i (w)}i∈ Ĩ for any w ∈ N (u). Thereby, ζ̃ is piecewise C2 on N (u). This completes
the proof. ��
3.3 Piecewise C2-ness of η

With the arguments in previous subsections, we are ready to derive the piecewise C2-ness of
η and the semismoothness of its gradient g.

Proposition 8 For any u ∈ IRn, let x be the optimal solution of (Pu). Suppose MFCQ and
GAIPCQ both hold at x. Suppose further that the strong second-order sufficiency condition
holds at every KKT point of (Pu). Then, for any v ∈ IRm, the Moreau–Yosida regularization
η is piecewise C2 on an open neighborhood of v.

Proof For any v ∈ IRm , let u := AT v+ AT M−1a ∈ IRn . Then, by the assumption and Prop-
ositions 3, 6, and 7, ζ̃ is piecewise C2 on some neighborhood N (u) with a representation
{ζ̃ j } j∈ Ĩ , where Ĩ is a finite index set. By virtue of Proposition 2, this representation induces
a representation {η̃ j } j∈I of η̃ and there exists an open neighborhood N (v) of v such that η̃ is
piecewise C2 on N (v). Therefore, by Proposition 1, η is piecewise C2 on N (v) as well. ��

By Proposition 8, we obtain the following result immediately.

Proposition 9 Suppose that the assumptions in Proposition 8 are all satisfied. Then, for any
v ∈ IRm, the gradient g of the Moreau–Yosida regularization η is piecewise smooth on an
open neighborhood N (v) of v. Furthermore, g is semismooth on N (v).
Proof For any v ∈ IRm , it follows from Proposition 8 that η is piecewise C2 on an open
neighborhood N (v) of v. In addition, since η is smooth on IRm , thus, g(v) = ∇η(v) is
piecewise smooth on N (v) as well, which implies that g is semismooth on N (v). ��

4 BD-regularity of ∂g

In the previous section, we investigate the semismoothness of the gradient g of the regularized
function η. In order to obtain the superlinear convergence of the generalized Newton method
for solving nonsmooth equation, people also assume that all matrices in ∂g to be positive
definite. In this section, we will study under which conditions on the objective function f
and constraints f j , j ∈ Î , all elements in the generalized Jacobian of g are positive definite.
First, we recall the definition of the Clarke generalized Jacobian.
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Definition 4 Let F : IRn → IRm be a locally Lipschitz continuous function. The
B(ouligand)-subdifferential of F at x ∈ IRn , denoted by ∂B F(x), is set of V such that

V = lim
k→∞ J F(xk),

where {xk} ∈ DF is a sequence converging to x and DF denotes the set where F is differen-
tiable. The Clarke generalized Jacobian of F at x [2], denoted by ∂F(x), is the convex hull
of ∂B F(x), i.e.,

∂F(x) = conv {∂B F(x)}.
We say F is BD-regular at x if every V ∈ ∂B F(x) is nonsingular, and CD-regular at x if
every V ∈ ∂F(x) is nonsingular.

Remark 2 Note for any v ∈ Dg , Jg(v) is symmetric and positive semidefinite since g is the
gradient mapping of the convex function η. So, every V ∈ ∂B g(v) is symmetric and positive
semidefinite. Then, all V ∈ ∂g(v) are positive definite if g is BD-regular at v. This implies
that, to study the positive definiteness of ∂g, it suffices to investigate the BD-regularity of g.

By Proposition 1, g(v) = ∇η(v) = ∇η̃(v) − a for any v ∈ IRm . Then, ∂g(v) = ∂ g̃(v)
where g̃(v) := ∇ ζ̃ (v). By Proposition 8, g̃ is piecewise smooth on an open neighborhood
N (v) of v with a representation {∇η̃ j } j∈I , I is a finite index set. In addition, by [14],

∂g(v) = ∂ g̃(v) ⊆ conv{∇2η̃ j (v) : j ∈ I (v)}, (25)

where I (v) = { j ∈ I : g̃(v) = ∇η̃ j (v)}.

Proposition 10 Let ξx (u), ξλ(u) be defined as in Lemma 2. Then,

∇ξx (u) = S(ST H S)−1ST ,

∇ξλ(u) = (RT R)−1
(

RT − RT H S(SH S)−1ST
)
,

where

H = AT M−1 A + ∇2 f (ξx (u))+
∑

i∈IQ

ξλi (u)∇2 fi (ξx (u)), (26)

R = (∇ fi (ξx (u)))i∈IQ ∈ IRn×|IQ |, (27)

and S is a matrix whose column vectors are orthogonal and the spanning space of all column
vectors is the null space of matrix R, Null(R).

Proof By Lemma 2, the solution to equation

	Q(x, λ) =
⎛

⎝
AT M−1 Ax + ∇ f (x)+ ∑

i∈IQ
λi∇ fi (x)

f̃ (x)

⎞

⎠ =
(

u
0

)

(28)

is (x, λ) = (ξx (u), ξλ(u)). That is,

	Q(ξx (u), ξλ(u)) =
(

u
0

)

.
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Differentiating the above equation with respect to u, we obtain

∇	Q(ξx (u), ξλ(u))

⎛

⎝
∇ξx (u)

∇ξλ(u)

⎞

⎠ =
⎛

⎝
In×n

0

⎞

⎠ ,

where

∇	Q(ξx (u), ξλ(u)) :=
⎛

⎝
H R

RT 0

⎞

⎠ .

Then, we have

H∇ξx (u)+ R∇ξλ(u) = In×n, (29)

RT ∇ξx (u) = 0. (30)

Let L Q(u) = {
d ∈ IRn : ∇ fi (ξx (u))T d = 0, i ∈ IQ

}
and S be a matrix consisting of orthog-

onal column vectors which span the subspace L Q(u). In fact, L Q(u) is the null space of R.
By definition, RT S = 0. So,

∇ξx (u) = S∇ξx S(u)+ R∇ξx R(u), (31)

where ∇ξx S(u) ∈ IR(n−|IQ |)×n and ∇ξx R(u) ∈ IR|IQ |×n . Multiplying on the left by RT of
both sides of (31), with the help of (30), we get

RT ∇ξx (u) = RT S∇ξx S(u)+ RT R∇ξx R(u) = 0.

In addition, as RT R is nonsingular, ∇ξx R(u) = 0. It yields that

∇ξx (u) = S∇ξx S(u). (32)

Then, (29) can be rewritten as H S∇ξx S(u) + R∇ξλ(u) = In×n . Multiplying the above
equation on the left by ST , we have

ST H S∇ξx S(u)+ ST R∇ξλ(u) = ST .

Again, by virtue of RT S = 0, it yields that

ST H S∇ξx S(u) = ST . (33)

Since

ST H S = ST (AT M−1 A)S + ST ∇2 f (ξx (u))S +
∑

i∈IQ

ξλi (u)S
T ∇2 f (ξx (u))S

= ST

⎛

⎝AT M−1 A + ∇2 f (ξx (u))+
∑

i∈IQ (λ)

ξλi (u)∇2 fi (ξx (u))

⎞

⎠ S

+
∑

i∈IQ\IQ(λ)

ξλi (u)S
T ∇2 fi (ξx (u))S,

by the definition of WQ , the first term of in the above equation is positive definite and the
second term is positive semidefinite, hence, ST H S is positive definite. It follows from (33)
that ∇ξx S(u) = (ST H S)−1ST . By virtue of (32),

∇ξx (u) = S(ST H S)−1ST . (34)
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Multiplying (29) on the left by RT gives

RT H∇ξx (u)+ RT R∇ξλ(u) = RT .

So,

∇ξλ(u) = (RT R)−1(RT − RT H∇ξx (u)).

By (34), we obtain

∇ξλ(u) = (RT R)−1(RT − RT H S(ST H S)−1ST ).

This completes the proof. ��

Proposition 11 Let x(u) and ζ̃ (u) be defined as in Proposition 3. Then,

∇2ζ̃ (u) = ∇x(u) =
(
∇2 f (x(u))+ AT M−1 A

)−1
, u ∈ N (ū),

where ū ∈ Ũ as defined in (1) and N (ū) is defined as in Proposition 3.

Proof By Proposition 3, the solution x(u) to equation

ϒ(x, u) = ∇ f (x)+ AT M−1 Ax − u = 0,

is smooth on N (ū). Differentiating the above equation with respect to u, we get

(∇2 f (x(u))+ AT M−1 A)∇x(u)− In×n = 0.

Thereby, ∇2ζ̃ (u) = ∇x(u) = (∇2 f (x(u))+ AT M−1 A
)−1

. This completes the proof. ��

Remark 3 Note that for ū ∈ Û , by Proposition 4, the Hessian of ζ̃Q(u) equals to ∇ξx (u)
on a neighborhood N (ū) since ∇ ζ̃Q(u) = ξx (u). Thereby, by Proposition 10, we derive an
expression of ∇2ζ̃Q(u) for any facet Q of F . In the case of ū ∈ Ũ , Proposition 11 provides
an expression of ∇2ζ̃ (u) in a vicinity of ū. Thus, by Propositions 2 and 8, we can derive
expressions of the Hessians of all pieces for η (or η̃) on some neighborhood of v ∈ IRm .

Lemma 4 Let C = AD AT , where A ∈ IRm×n with rank(A) = m ≤ n, D ∈ IRn×n, and
DT = D. Then, C is positive definite on IRm if and only if D is positive definite on the
subspace R(AT ) := {AT d | ∀ d ∈ IRm}.

Proof Because C is positive definite if and only if ∀ d 
= 0 ∈ IRm , dT Cd > 0, which is
equivalent to (AT d)T D(AT d) > 0 for every d 
= 0 ∈ IRm . Since rank(AT ) = m, there exist

an orthogonal matrix P and a nonsingular upper triangular matrix R such that AT = P

(
R
0

)

.

Let α = AT d , it the follows that α = P

(
Rd
0

)

. Note that d 
= 0 ⇔ Rd 
= 0 ⇔ α 
= 0.

Hence, the above statement is further equivalent to αT Dα > 0 for any 0 
= α ∈ R(AT ).
Namely, D is positive definite on R(AT ). This completes the proof. ��

By Lemma 4, we derive the following result on the positive definiteness of elements in
∂g.
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Proposition 12 For u ∈ IRn, let x be the optimal solution of (Pu). Suppose that MFCQ and
GAIPCQ hold at x. Suppose further that the strong second order sufficiency condition holds
at each KKT point of (Pu). Suppose that for any facet Q j of F with the index set IQ j

C j = S j (S
T
j Hj S j )

−1ST
j is positive definite on R(AT ),

where Hj , S j , and R j are defined as Proposition 10 with respect to facet Q j . Then, g is
BD-regular at every v ∈ IRm. Thereby, all V ∈ ∂g(v) are positive definite.

Proof By the definition of BD-regularity and (25), it is enough to show that ∇2η̃ j (v) is
positive definite for any j ∈ I (v)(⊆ I ), where {η̃ j } j∈I is a representation of η̃ on a neigh-
borhood around v and I is a finite index set. For any v ∈ IRm , let u = AT (v + M−1a). We
consider the following three cases.

Case i. u ∈ Ũ . By Proposition 3, |I | = 1, which means that η̃ has only one piece generated
by that of ζ̃ . In this case, by (15) and Proposition 11,

∇2η(v) = A∇2ζ̃ (u)AT = A∇x(u)AT = A(AT M−1 A + ∇2 f (x))−1 AT ,

which is positive definite due to rank(A) = m.
Case ii. u ∈ intÛ . For any facet Q j and the corresponding function ζ̃ j as discussed in

Lemma 2 and Proposition 4, it follows that

∇η̃ j (v) = A∇ ζ̃ j (A
T (v + M−1a)).

Thereby,

∇2η̃ j (v) = A∇2ζ̃ j (A
T (v + M−1a))AT = A∇ξx j (A

T (v + M−1a))AT .

Thus, according to Proposition 10 and Lemma 4, the desired result follows immediately.
Case iii. u ∈ bdÛ . By Propositions 7 and 8, it is easy to see that any piece η̃ j should

be a piece either in Case i or Case ii. Hence, the desired result is valid. This completes the
proof. ��
Remark 4 Note that, for sake of simplicity in analysis, for any facet Q of F , we may redefine
set G Q(x, λ) defined in Sect. 3 as follows: G Q(x, λ) := {d : ∇ fi (x)T d = 0, ∀ i ∈ IQ}. In
addition, the MFCQ condition can be strengthened by LICQ. In this case, the GAIPCQ con-
dition becomes to be redundant because LICQ implies CRCQ and CRCQ implies GAIPCQ.
The results obtained above are still valid after making some necessary changes.

By Proposition 12, we derive the following result which simplifies the conditions of Prop-
osition 12.

Proposition 13 For u ∈ IRn, let x be the optimal solution of (Pu). Suppose that MFCQ and
GAIPCQ hold at x, and that the strong second order sufficiency condition holds at every
KKT point of (Pu). Assume that

R(AT ) ∩ span{∇ fi (x)}i∈IQ = {0} (35)

for any facet Q of F . Then, g is BD-regular at any v ∈ IRm. Thereby, all V ∈ ∂g(v) are
positive definite.

Proof According to the linear independence of {∇ fi (x)}i∈IQ and the definition of S defined
in Proposition 10 with respect to Q, it follows that

span{∇ fi (x)}i∈IQ � span(S) = IRn,
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where “�” denotes the orthogonal decomposition operation in the vector space IRn . Let
R = (∇ fi (x))i∈IQ ∈ IRn×|IQ |. Since, by assumption, rank(A) = m, we then have AT d 
= 0
for any d 
= 0 ∈ IRm . Hence, it follows from (35) that AT d /∈ span{∇ fi (x)}i∈IQ . Thereby,
there exist α ∈ IR|IQ | and β 
= 0 ∈ IRn−|IQ | such that

AT d = Rα + Sβ.

Note that RT S = 0, it yields that

(AT d)T S(ST H S)−1ST (AT d)

= (Rα + Sβ)T S(ST H S)−1ST (Rα + Sβ)

= αT RT S(ST H S)−1ST (Rα + Sβ)+ βT ST S(ST H S)−1ST (Rα + Sβ)

= βT ST S(ST H S)−1ST Sβ > 0,

where H is defined as Proposition 12 with respect to facet Q. Hence, all the conditions
in Proposition 12 hold, which implies that the desired results are valid. This completes the
proof. ��

5 Conclusion

The Lagrangian dual is widely used for large-scale problems. We investigate the semismooth-
ness of the gradient g of the Moreau–Yosida regularization of the Lagrangian-dual function,
which plays a key role in the superlinear or quadratic convergence analysis of generalized
Newton methods for solving nonsmooth equations. Besides the well known smoothness
property, we have showed that the regularized function η possesses a nice feature, i.e., η
is piecewise C2, which is a large class of locally Lipschitz continuous functions. We have
obtained the piecewise smoothness and thereby semismoothness of the gradient g of the regu-
larized function. We have also investigated the conditions, under which the Clarke generalized
Jacobian of g is BD-regular and thereby is CD-regular. For future research, we will investi-
gate the the relationship between the projection mapping over the epigraph of the regularized
function η and that of the Lagrangian-dual function ϕ which was studied in [9,10].
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References

1. Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable oper-
ator equations. SIAM J. Numer. Anal. 38, 1200–1216 (2000)

2. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
3. Dontchev, A.L., Qi, H.-D., Qi, L.: Convergence of Newton method for convex best interpolation. Numer.

Math. 87, 435–456 (2001)
4. Dontchev, A.L., Qi, H.-D., Qi, L.: Quadratic convergence of Newton method for convex interpolation

and smoothing. Constr. Approx. 19, 1230–143 (2003)
5. Fukushima, M., Qi, L.: A global and superlinear convergent algorithm for nonsmooth convex minimi-

zation. SIAM J. Optim. 6, 1106–1120 (1996)
6. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer Verlag,

Berlin (1993)
7. Janin, R.: Directional derivative of the marginal function in nonlinear programming. Math. Program.

Stud. 21, 110–126 (1984)

123



394 J Glob Optim (2009) 44:375–394

8. Meng, F., Hao, Y.: The property of piecewise smoothness of Moreau–Yosida approximation for a piece-
wise C2 convex function. Adv. Math. (China) 30, 354–358 (2001)

9. Meng, F., Sun, D., Zhao, G.: Semismoothness of solutions to generalized equations and the Moreau–
Yosida regularization. Math. Program. 104, 561–581 (2005)

10. Meng, F., Zhao, G., Goh, M., Souza, R.D.: Lagrangian-dual functions and Moreau–Yosida regulariza-
tion. SIAM J. Optim. 19, 39–61 (2008)

11. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Op-
tim. 15, 957–972 (1977)

12. Mifflin, R., Qi, L., Sun, D.: Properties of the Moreau–Yosida regularization of a piecewise C2 convex
function. Math. Program. 84, 269–281 (1999)

13. Moreau, J.J.: Proximite et dualite dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)
14. Pang, J.-S., Ralph, D.: Piecewise smoothness, local invertibility, and parametric analysis of normal

maps. Math. Oper. Res. 21, 401–426 (1996)
15. Pang, J.-S., Sun, D., Sun, J.: Semismooth homeomorphisms and strong stability of semidefinite and

Lorentz complementarity problems. Math. Oper. Res. 28, 39–63 (2003)
16. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)
17. Qi, L., Sun, D., Zhou, G.: A new look at smoothing Newton methods for nonlinear complementarity

problems and box constrained variational inequalities. Math. Program. 87, 1–35 (2000)
18. Robinson, S.M.: Generalized equations and their solutions, Part II: application to nonlinear program-

ming. Math. Program. Stud. 19, 200–211 (1982)
19. Rockafellar, R.T.: Convex Analysis. Princeton, New Jersey (1970)
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